《计算机光盘软件与应用》
文章摘要:火箭发动机壳体内部螺纹连接处缝隙的检测精度是衡量其质量的重要指标,由于发动机壳体内表面形貌复杂,因此内缝质量仅靠人工检测不仅效率低而且可靠性差。提出一种基于FNN网络的内缝视觉检测方法,以灰度共生矩阵和PCA算法构造图像的特征参数,训练FNN网络,将火箭发动机壳体内缝的粗加工面与精加工面进行分类,分类识别率98.8%;然后,对两类情况做不同的图像处理,用Sobel算子找到缝隙边缘;最后,通过标定进行包括采集原始图像误差、直线拟合误差的系统误差修正,完成内缝宽度精确测量。实验表明,该方法稳定可靠,能够实现0.1mm~0.6mm范围 内±0.02mm的识别精度。该方法实现了火箭发动机壳体内部螺纹连接处的高精度测量,为实现产品高效自动生产和质量检测提供了技术保障。
文章关键词:
论文分类号:V435;TP391.41